Site icon Life Force Research Center

The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls

Jonna Jalanka,1,2 Giles Major,2 Kathryn Murray,2 Gulzar Singh,2 Adam Nowak,3 Caroline Kurtz,4 Inmaculada Silos-Santiago,5 Jeffrey M. Johnston,6 Willem M. de Vos,7 and Robin Spiller2,

Abstract

Psyllium is a widely used treatment for constipation. It traps water in the intestine increasing stool water, easing defaecation and altering the colonic environment. We aimed to assess the impact of psyllium on faecal microbiota, whose key role in gut physiology is being increasingly recognised. We performed two randomised, placebo-controlled, double-blinded trials comparing 7 days of psyllium with a placebo (maltodextrin) in 8 healthy volunteers and 16 constipated patients respectively. We measured the patients’ gastrointestnal (GI) transit, faecal water content, short-chain fatty acid (SCFA) and the stool microbiota composition. While psyllium supplement had a small but significant effect on the microbial composition of healthy adults (increasing Veillonella and decreasing Subdoligranulum), in constipated subjects there were greater effects on the microbial composition (increased LachnospiraFaecalibacteriumPhascolarctobacteriumVeillonella and Sutterella and decreased uncultured Coriobacteria and Christensenella) and alterations in the levels of acetate and propionate. We found several taxa to be associated with altered GI transit, SCFAs and faecal water content in these patients. Significant increases in three genera known to produce butyrate, LachnospiraRoseburia and Faecalibacterium, correlated with increased faecal water. In summary, psyllium supplementation increased stool water and this was associated with significant changes in microbiota, most marked in constipated patients.

Keywords: prebiotics, microbiome, ispaghula, constipation, transit

1. Introduction

Psyllium husk, derived from the seeds of Plantago ovata, consists of highly branched and gel-forming arabinoxylan, a polymer rich in arabinose and xylose which has limited digestibility in humans. However, several members of the intestinal microbiota can utilize these oligosaccharides and their constituent sugars as an energy source [1,2,3,4,5], and therefore, psyllium can be considered to have prebiotic potential. In general, the health-promoting effects of prebiotics include supporting the growth of bacteria beneficial to the host and increasing the production of short-chain fatty acids (SCFA) such as butyrate and propionate previously shown to be positive for colonic health [6]. Another property of psyllium is that it is capable of retaining water in the small intestine, and thereby, increasing water flow into the ascending colon. The resulting increase in the fluidity of colonic content may explain the success of psyllium husk in treating constipation [7,8,9]. In addition to the relief of symptoms through softening of stool and increasing stool frequency, the increase of free water alters the environmental conditions of the colon.

The effects of psyllium husk on host physiology have already been described, however, the effect that it has on the microbial ecosystem has not been well characterised. The effect of psyllium on microbial composition has been studied in an in vitro model mimicking the healthy intestine where it was shown that the microbial composition was not strongly affected. [10] However, there was an indication that the bacterial fermentation of fibres increased colonic levels of SCFAs. Moreover, a recent trial observed that psyllium supplementation protected mice from colitis by reducing the inflammatory response. This response was found to be largely microbiota dependent [11].

In this study, we aimed to determine the effect of psyllium husk supplementation on the intestinal microbiota of both healthy subjects and patients with chronic idiopathic constipation using two separate randomised, placebo-controlled intervention studies. The samples for this study come from two linked, published clinical trials [12] where the effect of psyllium husk on colonic volume and intestinal water content was tested on first healthy adult subjects and then adults with chronic constipation. Here, we built on the results reported previously by concentrating on the microbial composition alterations introduced by psyllium supplementation. We aimed to understand how altered gut environmental conditions induced by psyllium husk affected the microbiota composition. Here, we showed that in healthy controls there was a very small change in the microbiota, however, there was a larger change in the microbial composition of the constipated patients.

Reference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358997/

Psyllium Husk

Exit mobile version