Connect with us

Alternative Health

Bilberry (Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaster High-Sugar Diet Model

Published

on

1 Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania

2 Doctoral School of Molecular Cell Biology and Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary

3 Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary

4 Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania

5 Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania

6 Faculty of Pharmacy, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania

7 Doctoral School of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary

8 Agricultural and Molecular Research and Service Institute, University of Nyiregyhaza, H-4400 Nyíregyháza, Hungary

9 Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary

*Authors to whom correspondence should be addressed.

Andreea-Adriana Neamtu and Rita Szoke-Kovacs contributed equally to this work and are both considered first author.

Published: 30 October 2020

Abstract

Bilberries (Vaccinium myrtillus L.) have been reported to hold a plentitude of health-promoting properties beyond basic nutrition, mainly attributed to their anthocyanin content and antioxidant activity. In this article, we built the phytochemical profile of three wild bilberry fruit extract formulations (aqueous, methanolic, and hydro-methanolic) using UHPLC-ESI-MS/MS putative analysis, identifying 88 individual phytochemicals, mainly flavonoids (total content 8.41 ± 0.11 mg QE/g dw), free amino acids, polyphenols (total content 21.68 ± 0.19 mg GAE/g dw), carboxylic acids, and vitamins. Furthermore, the antioxidant activity of the extract was assessed, reaching 78.03 ± 0.16% DPPH free radical scavenging activity, comparable to literature values determined for bilberry extracts of other origin. Due to the increased prevalence of metabolic syndrome and based on the reviewed benefits of bilberries, we tested the most potent formulation of our bilberry extracts in this biological context. The in vivo rescue effect of a bilberry extract supplemented diet on Drosophila melanogaster was assessed by monitoring biochemical and genomic markers. Hemolymph trehalose levels were halved upon addition of 3% hydro-methanolic bilberry extract to a high-sugar (1.5 M sucrose) diet, as compared to the non-supplemented high-sugar diet. Noteworthy, the rescue seen for flies kept on the bilberry extract supplemented high-sugar diet appeared to parallel the trehalose levels observed in the case of the control diet (50 mM sucrose) flies. Moreover, next to the trehalose-lowering type of in vivo effects, other gene expression related rescues were also detected for genes such as InRAkhAstAAstCIrkNpc2g, and CCHa2 upon supplementation of the high-sugar diet with our hydro-methanolic bilberry fruit extract. Our findings suggest that such a bilberry fruit extract could generate physiological and genomic type of compensatory mechanisms so that further translational approaches would advance the understanding of some human specific pathological conditions.

Keywords: bilberryphytochemicalantioxidant activityflavonoidpolyphenolhemolymph trehaloseinsulin resistancemetabolic syndromeDrosophila melanogaster

1. Introduction

Bilberries (Vaccinium myrtillus L.) are the native European blueberries, closely related to the North American blueberry species (Vaccinium corymbosum L.), both part of the widespread genus Vaccinium containing over 200 species [1]. Berries constitute a large group of functional foods, also nowadays known as “superfoods”, whose consumption delivers several health benefits beyond basic nutrition, mainly attributed to their anthocyanin content holding mainly antioxidant but also recently characterized antiglycoxidant properties [2,3]. Despite their similarities, berries differ in their phytochemical content, such as flavonoids and anthocyanins, of both plants and fruit [4,5,6]. The quantity of the main anthocyanins found in bilberries is more than twice the one found in blueberries [7]. Furthermore, anthocyanin content seems to be higher in wild bilberries as compared to the cultivated ones [8,9,10].

The biological effects of individual anthocyanins have been studied in detail; however, that does not hold true for the whole bilberry fruit extract. Complex interactions of multiple components within the food matrix may differ significantly in outcome when compared to a single purified constituent or constituents [11]. Hence, there is a need to evaluate the observed biological properties as a result of not only additive but also complementary synergistic and/or antagonistic effects, or any combination thereof, of all phytochemicals present [11]. In line with this rationale, we decided to focus our study on the whole bilberry fruit extract.

Bilberries have been observed to hold a plentitude of health-promoting properties. Research studies support their beneficial effects, among which antioxidant, anti-obesity, anticarcinogenic, cardioprotective, anti-inflammatory, hypoglycemic, antimicrobial, and vision improvement [12,13,14].

Based on the health-promoting properties of bilberries, we decided to study the extract in a Drosophila melanogaster model for insulin resistance and type II diabetes [15]. The first paper that explicitly modelled type II diabetes in Drosophila tested the role of a high-sugar diet on the acquisition of insulin resistance [16]. Characteristics of insulin resistance were assessed as rearing flies on high-sugar diet resulted in the overexpression of dilp 2,3,5 RNA and circulating DILP2. Despite increased levels of DILP(s) in circulation, sugar levels remained elevated—a feature resembling mammalian insulin resistance. Moreover, decreased levels of phospho-Akt were observed in response to administration of exogenous insulin in adult flies reared on a high-sugar diet, suggesting a decreased capacity of response to insulin signalling following chronic uptake of dietary sugar. Finally, flies exposed to a high-sugar diet exhibited elevation of free fatty acid and triglyceride levels as compared to the flies raised on a control isocaloric diet, and the morphology of lipid storage changed, to exhibit fewer, larger droplets [17]. Together, these studies showed that flies kept on a chronic high-sugar diet are hyperglycemic, insulin-resistant, and obese, constituting a relevant model to assess our bilberry fruit extract health promoting properties [18,19].

This is highly relevant nowadays, as in recent years, people consume increasingly higher amounts of carbohydrates, to reach what Bovi et al. suggestively called “the pandemic of sucrose intake” [20]. Added sugars represent empty calories, as they only supply food energy but no other nutrients. They increase the risk of developing obesity, inflammation, cardiovascular disease, hypertension, diabetes, insulin resistance, obesity-related cancers, and metabolic syndrome, a non-communicable disease responsible for morbidity and mortality predominantly in the developed world [21]. It is defined by the World Health Organization as a pathology characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia [22]. The incidence of metabolic syndrome in the United States is about one in three people, reaching epidemic proportions [23].

With growing attention dedicated to harvesting and consuming local foods, we find it important to build the chemical profile, including chemo-mapping, antioxidant activity, and polyphenol and flavonoid content of bilberry fruit growing in the Carpathian Mountains, in the central part of Romania, which is a novel analysis and never before made the subject of a scientific article to the best of our knowledge. We also examine the rescue effects generated by our bilberry fruit extract in relation to the modifications caused by a high-sugar diet, using Drosophila melanogaster as a nutritional genetic model.

Go to:

antioxidants-09-01067-v2

References:

https://www.mdpi.com/2076-3921/9/11/1067/htm

Alternative Health

Ivermectin – Niacin Research

Published

on

Continue Reading

Alternative Health

A review on phytochemistry and medicinal properties of the genus Achillea

Published

on

  • Received 30 Apr 2011; Revised 2 July 2011; Accepted 2 July 2011

1Saeidnia S., *1Gohari AR., 1Mokhber-Dezfuli N, 2 Kiuchi F.
1 Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical
Sciences, Tehran, Iran. 2 Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku,
Tokyo 105-8512, Japan.

Abstract

Achillea L. (Compositae or Asteraceae) is a widely distributed medicinal plant throughout the world and has been used since ancient time. Popular indications of the several species of this genus include treatment of wounds, bleedings, headache, inflammation, pains, spasmodic diseases, flatulence and dyspepsia. Phytochemical investigations of Achillea species have revealed that many components from this genus are highly bioactive. There are many reports on the mentioned folk and traditional effects. Although, the medicinal properties of Achillea plants are recognized worldwide, there are only one review article mainly about the structures of the phytochemical constituents of Achillea. The present paper reviews the medicinal properties of various species of Achillea, which have been examined on the basis of the scientific in vitro, in vivo or clinical evaluations. Various effects of these plants may be due to the presence of a broad range of secondary active metabolites such as flavonoids, phenolic acids, coumarins, terpenoids (monoterpenes, sesquiterpenes, diterpenes, triterpenes) and sterols which have been frequently reported from Achillea species.

Keywords: Achillea, Asteraceae, Bioactive compounds.

Go to:

INTRODUCTION

The genus Achillea L. belongs to Asteraceae (Compositae), the largest family of vascular plants. Asteraceaeous plants are distributed throughout the world and most common in the arid and semi-arid regions of subtropical and lower temperate latitudes. Achillea contains around 130 flowering and perennial species and occurs in Europe and temperate areas of Asia and a few grow in North America. These plants typically have hairy and aromatic leaves and flat clusters of small flowers on the top of the stem. Since these flowers have various colors, a number of species are popular garden plants (14). The basic chromosome number of this genus is X=9 and most of the species are diploid with great ecological ranges from desert to water-logged habitats (5).

The name of Achillea is referred to the Achilles in the literary Trojan War of the Iliad who used yarrow to treat the soldiers’ wounds (6). The majority of the Achillea species are as the medicinal plants which have therapeutic applications (4). There are few review papers on the different aspects of Achillea as a noteworthy and medicinal genus. Recently, Si and co-authors (7) published a review article mainly about the structures of phytochemical constituents and a brief section of biological properties of Achillea (7). Literature reviews show that there are many reports on pharmacological, immunological, biological and other therapeutic activities of these valuable herbs which are reviewed in this article.

Traditional usages 

Since Achillea genus is widespread all over the world, its species have been used by local people as folk or traditional herbal medicines. Bumadaran is a popular name for several species of Achillea in Persian language. They are reported as tonic, anti-inflammatory, anti-spasmodic, diaphoretic, diuretic and emmenagogic agents and have been used for treatment of hemorrhage, pneumonia, rheumatic pain and wounds healing in Persian traditional literature (89).

In Spanish-speaking New Mexico and southern Colorado, A. millefolium L. is called plumajillo, or “little feather”, because of the shape of the leaves. Native Americans and early settlers used yarrow for its astringent qualities that made it effective in wound healing and anti-bleeding (10).

Achillea species are the most important indigenous economic plants of Anatolia. Herbal teas prepared from some Achillea species are traditionally used for abdominal pain and flatulence in Turkey (11). Dioscorides also used Achillea for dysentery, whether associated with cholera or other causes, which killed as many soldiers as did steel and lead. In terms of Chinese medicine, Achillea can be said to have three main actions: clear Exterior Wind (diaphoretic), Tonify Deficiency (tonic) and clear Heart Phlegm (anti-hypertention) (12).

Many of these therapeutic usages have been confirmed by new experimental and clinical studies. The consumption of herbal teas from different species of Achillea, especially for treatment of the gastrointestinal tract, is common in folk medicine (13). However, there are still several unknown aspects of Achillea plants that need more attention.

Phytochemical constituents 

Phytochemical investigations of Achillea species have revealed that many components from this genus are highly bioactive. The first anti-spasmodic flavonoids, cynaroside I and cosmosiin II (Scheme 1) were isolated from A. millefolium L. (14), and the first natural proazulene, achillicin III (Scheme 2) was identified from the genus Achillea (15). Literature search shows that the, flavonoids, terpenoids, lignans, amino acid derivatives, fatty acids and alkamides such as p-hydroxyphenethylamide IV (Scheme 2) have been identified in Achillea species. The main constituents of the most species have been previously reviewed (7). Therefore, in this article some other minor or rare compounds and especially their medicinal or industrial usages which have been less described are reviewed. Among them,alkamides, the lipophilic and nitrogen containing compounds, are responsible for insecticide, anti-inflammation and some immunological activities of Achillea and Echinacea plants (16). The genus Achillea comprises flavored species which produce intense essential oils. The volatile oils of Achillea contain monoterpenes as the most representative metabolites. However, there are reports on high levels of sesquiterpenes compared with monoterpenes (1718). There are several pharmacological actions which have been mostly attributed to the presence of azulenogenous sesquiterpene lactones in the essential oil of Achillea. Results of studies have indicated that tetraploid species are accumulating proazulenes such as achillicin III (Scheme 2) (19).Except for the essential oil constituents, yarrow (A. tenuifolia Lam.) seeds consist of the high oil content which is rich in linoleic acid, an essential polyunsaturated fatty acid. This makes yarrow seed as a potential source of edible oil for human consumption (20). Recently, A. millefolium has been introduced as a new source of natural dye for wool dyeing due to the presence of the flavonoids, luteolin V and apigenin VI (Scheme 1). A. millefolium was found to have good agronomic potential as a natural dye in Iran (21). In the plant kingdom, hydroxycinnamoyl conjugates of quinic acid represent common end metabolites of the shikimate-phenylpropanoid pathway, and feruloylcaffeoylquinic acid derivates VII have been isolated only from two species of genus Achillea so far (22). From the aerial parts of Achillea species, proline VIII, stachydrine IX, betonicine X, betaine XI and choline XII have been isolated as the major nitrogen containing compounds (Scheme 2) (2324). Betaines, containing the permanent positive charge on the quaternary ammonium moiety, belong to an important class of naturally occurring compounds that function as compatible solutes or osmoprotectants (25). These compounds have shown immunosuppressive activity in the experimental animals (2627).

DARU-19-173

Reference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232110/

Continue Reading

Alternative Health

Yerba Mate (Ilex paraguariensis) Beverage: Nutraceutical Ingredient or Conveyor for the Intake of Medicinal Plants? Evidence from Paraguayan Folk Medicine

Published

on

Monika Kujawska

Abstract

The use of medicinal plants mixed with yerba mate (Ilex paraguariensis) has been poorly studied in the ethnopharmacological literature so far. The Paraguayan Mestizo people have the longest tradition of using the yerba mate beverage, apart from the indigenous Guarani people. This study analyses the role of yerba mate and medicinal plants in the treatment of illnesses within Paraguayan folk medicine. The research was conducted among 100 Paraguayan migrants living in Misiones, Argentina, in 2014 and 2015. Yerba mate is not considered to be a medicinal plant by its own virtues but is culturally a very important type of medicinal plant intake. Ninety-seven species are employed in hot and cold versions of the yerba mate beverage. The most important species are as follows: Allophylus edulis (highest number of citations), Aristolochia triangularis (highest relative importance value), and Achyrocline flaccida and Achyrocline tomentosa (highest score by Index of Agreement on Species). The plants are used in the treatment of 18 medicinal categories, which include illnesses traditionally treated with plants: digestive system, humoral medicine, and relatively new health conditions such as diabetes, hypertension, and high levels of cholesterol. Newly incorporated medicinal plants, such as Moringa oleifera, are ingested predominantly or exclusively with the mate beverage.

1. Introduction

Yerba mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) is a native tree growing in the subtropics of South America, present in Southern Brazil, Northeastern Argentina, Eastern Paraguay, and Uruguay [1]. The yerba mate beverage has been consumed traditionally by Guarani indigenous people since before the conquest of South America by the Spaniards [2]. The commercial potential of this plant was discovered by the Jesuits, who brought wild growing yerba mate into cultivation. Pedro de Montenegro, a Jesuit monk, in his Materia Medica Misionera described the use of the most important species for the Guarani people, in which yerba mate appeared on the top of the list [3]. The Guarani name for yerba mate is ka’a which means “a plant” or “a herb”; hence yerba mate has been considered by this group as the plant par excellence [3]. Yerba mate was also known as Jesuit tea or Paraguayan tea and shipped as such to Europe [2]. With the expulsion of the Jesuits in 1768, the plantations went wild. By this time, the yerba mate beverage was already popular among Mestizo people (of Spanish and Guarani origin). Since the end of the 19th century, it also became a daily beverage for the European migrants who partly colonized Southern Brazil, Northeastern Argentina, and, to a lesser extent, Eastern Paraguay [4]. Nowadays yerba mate is consumed at the rate of more than one litre per day by millions of people in the above-mentioned countries [45]. It plays a very special social role and constitutes a very important form of caffeine intake [245]. Its popularity is also increasing outside South America due to its pharmacological properties, proven to be beneficial to health [467]. It is also a very important drink in Syria and Lebanon due to Syro-Lebanese migration to Argentina in the second half of the 19th century. Many migrants who returned to the Levant in the 1920s took the habit of drinking mate with them [89].

Over the last 20 years there has been an increase in studies of the pharmacologic properties of Ilex paraguariensis, which have been reviewed [46710]. Numerous active compounds have been identified in yerba mate. Phenolic compounds predominate caffeoyl derivatives (caffeic acid, chlorogenic acid) [1112], xanthines (caffeine and theobromine), which are a class of purine alkaloids found in many other plants such as tea and coffee, flavonoids (quercetin, kaempferol, and rutin), and tannins [7]. Numerous triterpenoid saponins have also been identified, including those derived from ursolic acids known as metasaponins [47]. Saponins are responsible for the distinct flavour of yerba mate extracts [7]. Yerba mate also contains minerals (P, Fe, and Ca) and vitamins (C, B1, and B2) [13].

Research on extracts and isolated compounds from yerba mate has provided a number of pharmacological applications. Studies have demonstrated that yerba mate leaves have antioxidant [11], antiobesity [1415], antidiabetic, digestive improvement and cardiovascular properties [1617], and chemopreventative ones (preventing cellular damage that may cause chronic diseases) [18]. The consumption of yerba mate infusion reduces LDL-cholesterol in parallel with an increase in HDL-cholesterol, as observed in studies on humans [19]. Yerba mate extract also reduces acute lung inflammation, as observed in the animal model [4]. Antimicrobial activity of Ilex paraguariensis has been recently studied as well [20].

Some ethnobotanical studies from the south cone of South America report medicinal uses of yerba mate beverage [2122]. Few ethnobotanical and ethnopharmacological studies mention that various medicinal plants are consumed together with the yerba mate beverage by Mestizo and European migrants living in Argentina and Paraguay [2326]. However, very little is known about how medicinal plants are combined with yerba mate beverage by local people. Additionally, medicinal plant use by Paraguayan Mestizo people is poorly documented in the English-language scientific literature, with very few exceptions [232630]. The documentation of medicinal plants and analysis of traditional knowledge related to the yerba mate beverage by Paraguayan Mestizo people is of paramount importance for two reasons: (1) apart from indigenous Guarani peoples, they have the longest tradition of using yerba mate and mixing it with medicinal plants; (2) The Paraguayan people are described in the literature as knowledgeable about medicinal plants [3031]. Nearly 80% of the population of Paraguay consume medicinal plants on a daily basis [30]. However, the relationship between traditional uses and pharmaceutical properties is poorly studied.

The objectives of this contribution were to (1) document and analyse the role of yerba mate in prophylaxis and treatment by Paraguayan Mestizo people; (2) evaluate the role of medicinal plants in yerba mate beverages, and (3) describe the scope of illnesses treated with yerba mate beverage and medicinal plants. Additionally, two questions guided my research and analysis: (1) Does any pattern exist showing that particular illnesses are treated with a hot version of yerba mate beverage and others with a cold one? (2) How receptive is this traditional mode of plant administration to new health challenges and new medicinal plants, previously unknown to the Paraguayan people?

ECAM2018-6849317

Reference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872613/

Continue Reading

Trending